Leveraging Computer Vision for Asset Tracking Solutions
LeveregeLeverege
Computer vision is already a crucial component in several technologies. It's vital to self driving cars and cars that assist drivers with technologies like lane detection and blind spot detection. In retail, computer vision is used to count customers, find out what interests them, and recommend similar products. In industrial settings, computer vision can be used for QA.
Computer vision can also be used to track assets effectively. There are several ways that it could work. The most common is as follows:
Similarly to the way that a person keeps track of things, someone would scan the room visually to find the asset, estimate how far it's from them and other identifiable landmarks, reference their position and the landmarks position on a map or floor plan, and then estimate where the asset is. This could work with a security system in place by having employees take a photo each time they leave an asset somewhere.
The other way would be similar to how a person identifies where they're on a map or floor plan. The person would identify landmarks on the map that they can see and then estimate their position on the map according to where they figure they are in relation to those landmarks.
Computer vision offers high accuracy and reliability for asset tracking. It has advantages over Bluetooth and WiFi, but it requires lots of bandwidth.
There are several different algorithms that can be used to implement computer vision. The first is used to determine what a picture contains. The picture is divided into many smaller squares, each of which gets assigned probabilities that correspond to the likelihood that the picture is of a certain object. Those probabilities are the result of feeding many, many images through a machine learning model to "train" the algorithm. These probabilities are then multiplied together to calculate the probabilities of what the whole picture represents. This algorithm is used in a more complex process called Object Detection, in which the algorithm scans over the picture and detects various objects in the picture using the algorithm described previously.
The second algorithm, Object Tracking, expands on Object Detection. Object tracking examines videos or a series of pictures using Object detection to identify objects. A tracker then traces those objects' movement through the frames.
The third algorithm, Semantic Segmentation, examines the image and assigns each pixel in the image to an object in the picture.
The Most Comprehensive IoT Newsletter for Enterprises
Showcasing the highest-quality content, resources, news, and insights from the world of the Internet of Things. Subscribe to remain informed and up-to-date.
New Podcast Episode
Related Articles