From Data to Decisions: Making Sense of the Information Deluge Faced by Fleet Managers
Guest WriterGuest Writer
With the proliferation of telematics through sensor technology, mobile-based data collection, and, more recently, artificial intelligence (AI), there is an unprecedented amount of real-time information fleet managers can acquire from their connected vehicles. However, having all that data at your fingertips and knowing exactly what to do with it are two completely different propositions.
Take, for example, this common scenario: As a fleet manager, youāre pushed for time to get deliveries out. You have drivers with limited available driving hours and a finite amount of equipment to ship the goods. Now what? Use the data sets available to you in real-time to calculate the best driver, vehicle, and route combination to get said deliveries out, making the most of the available resources based on the data you have.
Data is the driving force behind all key decisions. This is particularly true for fleet managers because everything can impact the bottom line.
Think about your business objectives. Are you looking to reduce fuel costs, become a safer fleet, hold drivers and/or customers accountable, set smarter prices, map out the best routes -- or all of the above? Knowing your business objectives will help set the course for the use of a telematics data system. The data from the telematics system will be an invaluable asset in reaching your business goals. They can then help your fleet become more competitive by winning and renewing more contracts, attracting and retaining the best drivers, and making compliance a practically automated endeavor. So, how do you do it? The answer is all in the data, which will help you to expose inefficiencies, identify positive anomalies which can drive you to take knowledgeable actions in real-time.
Even with an abundance of raw information, it can be tough to know what the data means without something to compare it to or help āconnect the dots. Thatās where AI coupled with Machine Learning creates predictive analytics and historical data to highlight certain data points which can guide fleet managers as they review and make decisions.
Comparisons are critical for spotting harmful trends that can be improved upon or a surprising positive trend that should become standard and replicated. Through AI, a base dataset is calculated to determine how your fleet currently performs. Through machine learning, that baseline is then assessed against new information from which opportunities can be recommended. Without much user intervention, some of the areas AI can expose include:
Sometimes projects may go off the rails, and fleets could out- or under-perform drastically compared to the expectation. These instances can be easily found and sorted through an advanced telematics platform and trigger a deeper dive into the numbers. Something off about a data set might require a closer look at other data points to get to the bottom of the issue. Fleet managers can set up their platforms to automate this data-discovery process and get the answers they need instantly. Deep machine learning technologies can discover anomalies based on historical data and associated real-time data. For example, this may show why fuel costs spike on a Friday on a given delivery or why it takes less time to complete similar jobs for a specific client.
By using smart telematics platforms powered by AI, fleet managers can effectively use the data to make actionable decisions with confidence. Often when thereās an inefficiency or a safety hazard, the course correction becomes apparent. The platform can be configured to provide fleet managers with important data patterns to identify trends and determine the best course of action in real-time. Some of the common data-based fleet decisions include:
These points are based on the data you receive, but is there such a thing as too much data? Yes, sometimes you can have too much data, especially if you cannot draw important and actionable conclusions.
The key is to choose a telematics platform that is powerful enough and can secure the right data for your fleet. Through innovations in AI, machine learning, geofencing, data collection, and camera/streaming technology, fleet managers have never had such a huge opportunity to have deep insights into what is going on with their fleet. A telematics system that uses next-gen technology like these also decreases the need for a data analyst and removes costly analysis periods where revenue may be lost waiting for those conclusions.
With these advancements in telematics, fleet and asset management platforms can now tell fleet managers what they donāt know when they need to know it. This further enables them to draw their own conclusions, apply their own best judgment backed by real-time data, and coach and enforce the best course of action. Ultimately, this updated technology allows fleet decision-makers to get ahead of potential issues rather than identifying them through historical data.
The Most Comprehensive IoT Newsletter for Enterprises
Showcasing the highest-quality content, resources, news, and insights from the world of the Internet of Things. Subscribe to remain informed and up-to-date.
New Podcast Episode
Related Articles