burgerlogo

How Does IoT Work?

How Does IoT Work?

avatar
QuicSolv Solutions Inc.

- Last Updated: December 2, 2024

avatar

QuicSolv Solutions Inc.

- Last Updated: December 2, 2024

featured imagefeatured imagefeatured image

“My wife climbed up on the weighing machine and the fridge announced that ‘You no longer have access to me’
”

This is how IoT (Internet of things) will work in the future. Though this was a joke, most devices in the future will be connected with each other and a hyper decision framework will define the further course of action.

With real life IoT examples such as temperature and humidity monitoring, you can easily understand both the inner workings of IoT devices and how IoT works.

Before you understand how IoT works, it is important to understand what are the important pieces and how do they piece together the puzzle, let us, therefore, look at what are the different components involved here.

Components of IoT

The main components that makeup IoT include:
1) IoT Sensors
2) Connectivity/Network
3) Cloud
4) Hyper Decision Framework
5) User Interface

IoT Sensors

The “things” in IoT come to life because of sensors. Let’s take an IoT service example, where the heating of a machine is being monitored. In a typical scenario, a heat sensor would display the temperature on an analog or digital screen and someone would be monitoring it physically or on a more advanced level when the heating goes beyond a threshold there would be an alarm raised. You will need to be in proximity to the alarm to take action.

In an IoT setup, however, this sensor would be able to send a message to a decision engine that has rules built in to take the action.

There are many types of such IoT sensors including temperature, humidity, pressure, CO2, light, occupancy, motion and more. What's important is that these sensors are an integral part of the ‘IoT device components’. They are the origin of truth and when connected with a decision engine, can make things work.

Connectivity / Network

Now that we understand the sensor technology in IoT and what they do, let’s get to know how they communicate with the decision engine.

Decision engines are not new. They have been in existence for a few decades in the form of PLC’s. Most of these connections to the decision engines have been wired. With the increase in sensors and the proliferation of these in various devices and machines, it became more and more important to connect wirelessly.

Various connectivity protocols using radio frequency technology, have emerged in recent years. Some of the most widely used technologies are, Bluetooth Low Energy BLE, LoRa, ZigBee, SigFox and NB-IoT. There is no need to get flabbergasted by these terms. In simple terms, all these technologies have modulated the radio frequencies to provide wireless connectivity for data originating from IoT sensors.

While all the above technologies have Applications-based applications in IoT, the one that has gained the most popularity is BLE (Bluetooth Low Energy). Most IoT sensors can send their data to BLE using UART (Universal Asynchronous Receiver/Transmitter) and Modbus communication protocols, BLE devices have the ability to transmit this information wirelessly, to other BLE devices and or BLE receivers called Gateways.

While adding many receivers may not be possible either because of the cost or due to infrastructure limitations, BLE devices can be arranged in a Mesh Network, so that the intended receiver can receive the message through nodes that are connected on the Mesh Network. Solutions like these have made the proliferation of IoT sensors and devices across industries such as healthcare, retail, logistics and manufacturing

Once the receivers have received the data, they can send this information to the decision engines, which are mostly sitting in the cloud Private or Public cloud using onboard GPRS, WiFi, or LTE.

IoT Cloud

Now that we have been able to send the data to the cloud, let’s try and understand what is the IoT Cloud and how it is an integral part to understanding how IoT works.

IoT sensors are usually resource-constrained and require a destination where they can send the data. An MQTT (MQ Telemetry Transport) protocol is generally used by these IoT sensors to transmit data. MQTT works like a broker that receives and transmits information to whoever subscribes to it on a topic. This MQTT server is generally also called the IoT server. Generally, rules are defined on this server so that data can be filtered as it comes in.

Some have confusion on why should one need an IoT server? The rate at which the IoT sensors send data, a regular server would not be able to handle the requests.

At QuicSolv Technologies, along with the MQTT, we have built a ‘Hyper Decision Framework’ called ISAE. Data from the IoT cloud server, is sent to this framework. Let’s now understand what is ISAE and why is it required.

Hyper Decision Framework – ISAE

IoT sensors have the ability to send data to the cloud. What we do with that data is very important. In one of our employee monitoring solutions, if an employee accidentally enters a hazard area, the hyper decision framework immediately sends an alarm and notification to people involved. So, let’s break this down to understand how IoT worked. The employee tag worn by the employee sent a message to the receiver that ‘I (40567) am here. The receiver sent this message to the MQTT server. The Hyper Decision Framework picked this up and checked if the employee ID 40567 was authorized to be in the area. If not, it sent out the alarms.

So, a hyper decision framework is a set of rules built inside a rule engine that works at hyper speeds. The analysis of information received and mapping this information against a set of rules that may overlap with each other and executing the decision associated with the rule is what we call the hyper decision framework.

As another example, you may experience that in some movie theaters when the theater is not full, the temperature inside could be lower than what is comfortable and when the theater is full, you would like the temperature to be a bit lower to make it comfortable. This is because the HVAC is sending the same amount of airflow irrespective of the number of people inside the theater. By using our Occupancy IoT Sensor, we could send the number of people in the theater to the Hyper Decision Engine and it could automatically regulate the airflow, thereby, not only reducing the cost but also making our movie watching experience better.

User Interface

Lastly, there needs to be an interface to this entire system. This may manifest typically as a mobile application and it can also be used as a web-based application. This will help to provide the Machine to People interface to the solution.

This interface will help the user to interact with the system, like in the case of home automation the user interface provided will help the user to switch on or off the lights or fan in a specific room. In an industrial application, the shop floor manager can directly control a machine based on the data inputs.

IoT in the Real World

Now that we have understood the concepts, let’s understand a few ‘Examples on How IoT Works’

Shopping Mall – Proximity Marketing

The shopper of today likes to feel and touch a product before making a purchase but also prefers the convenience of a digital lense. Today, IoT is making proximity marketing a reality such that when a shopper who frequents a particular store is in close proximity of that store, IoT sensors can send the information of the user to the hyper decision framework, that will analyze shopper behavior and shopping pattern to send the right message, at the right location, at the right time and to the right person.

Asset Tracking

Assets often include high-value inventory, tools, fixtures and more. For the healthcare sector, assets include various movable test machines such as EEG Machines, Ultrasound machines, portable X-Ray machines, stretchers, wheelchairs, etc. These assets need to be tracked so that it is easy to monitor the life of the asset, location of the asset and assist with yearly audits of assets.

Assets are often attached to BLE IoT Sensors. These sensors talk to receivers and anyone who needs the information on the asset can check the dashboard/application/mobile device to check where the asset is.

Warehouse Pallet Tracking

Reusable pallets in a warehouse are an important asset for many organizations. With warehouses, becoming larger in size, and the range of inventory increasing every year, pallet tracking helps with easy identification of the location of the pallets and reduces wastages of time and precious inventory.

BLE IoT Sensors can also be placed on pallets, which can provide valuable information on the location of the pallet, information on the inventory the pallet is holding and from what time.

Employee Monitoring

Monitoring of the employee within the campus of the organization is not only important from the point of view of increasing productivity, but also for security and morale boost.

BLE IoT sensors in the form of ID Cards can be worn by the employee. These ID cards have IoT sensors for sensing whether or not the card is on a person so that security can be managed and proximity to each machine or process will track the productivity.

Temperature and Humidity Monitoring

The supply chain management for ‘Cold Chain’ has the maximum use of IoT sensors. These sensors record the temperature and humidity inside the containers and send that data along with the GPS location of the truck. The advantage in comparison to current data loggers is that instead of pointing a finger and blame game, the IoT sensor can talk to the Hyper Decision Framework and help correct the problem in real-time. Thereby saving money, time, and reputation.

Security Patrol Guard Management

The biggest challenge that security guards have is that when terror strikes, they don’t have the tools to communicate with their teams to seek for help. Most of the time the security patrol guard has to either lose his weapon or lose his life.

How does IoT help here? The security guard, wears the BLE ID Card, on his shoulder. In case of an attack, he can press the distress button on the card twice. This SoS signal can be sent to the IoT cloud server in real-time and the hyper decision framework kicks in to send the message to the nearest help available.

Water Sensors

There are large reservoirs or tanks where the water levels need to be monitored to help take appropriate actions. Most level sensors require power and at times, it may not be possible to provide power at the location. This is where IoT sensors can be placed at various levels in the tank. As soon as water touches each sensor, the level indication can be communicated and appropriate action can be taken.

The Applications mentioned above are only a fraction of those that demonstrate the power of IoT. Not only businesses but homes are becoming IoT enabled. With applications of IoT being utilized across all industries, the number of connected devices is changing the way we live today.

Need Help Identifying the Right IoT Solution?

Our team of experts will help you find the perfect solution for your needs!

Get Help